Evaluation of transgenic cassava with resistance to cassava viruses in confined field trials under the VIRCA project

D. W. Miano
University of Nairobi

3rd National Biosafety Conference,
13th – 14th August 2014,
KICC, Nairobi, Kenya
VIRCA PARTNERS

Donald Danforth Plant Science Center
St. Louis, Missouri, USA

National Crops Resources Research Institute
Namulonge, Uganda

Kenyan Agricultural Research Institute
Nairobi, Kenya

International Institute for Tropical Agriculture
BecA, Nairobi, Kenya

Science Foundation for Livelihoods and Development
Kampala, Uganda

International Service for the Acquisition of Agri-biotech Applications – AfriCenter
Nairobi, Kenya
WHAT IS VIRCA

Virus Resistant Cassava for Africa (VIRCA) is a research project that is developing improved cassava varieties, which are resistant to cassava mosaic disease (CMD) and cassava brown streak disease (CBSD)
Cassava – strategic crop for Africa

- **Foliage**
 - Human food
 - Livestock feed

- **Stem**
 - Planting material

- **Roots**
 - Staple food
 - Unique starches

- Major source of food and income
- 2nd most important food crop in Africa after maize
- Strategic crop for increasing food supply, reducing hunger and responding to food emergency crises
Disease constraints

1. **Cassava mosaic disease (CMD)** has been the main disease constraint

1st reported 1894 in present day Tanzania

Caused an epidemic in the 1990s

Africa losses an average 30-40% (15-24 million tonnes; $6-25 billion/year)
Genome Organization and Replication of a Geminivirus

Geminate particles

8 Genes
Cassava-infecting begomoviruses (CMD)

- 9 distinct species, 7 in Africa
- ACMV and EACMV types most prevalent in EA

Africa

- East African cassava mosaic virus cluster
 - African cassava mosaic virus (ACMV)
 - East African cassava mosaic virus (EACMV)
 - East African cassava mosaic Malawi virus (EACMMV)
 - East African cassava mosaic Cameroon virus (EACMCV)
 - East African cassava mosaic Zanzibar virus (EACMZV)
 - East African cassava mosaic Kenya virus (EACMKV)
 - South African cassava mosaic virus (SACMV)

India

- Indian cassava mosaic virus (ICMV)
- Sri Lankan cassava mosaic virus (SLCMV)
Necrotic Rot of Storage Roots due to CBSD

- Complete spoilage, yield reduction
- Two viruses: CBSV, UCBSV

2. CBSD

- One of 7 most dangerous crops diseases in the world impacting food security (Science 327 – 12 February 2010)

- Similar features by New York Times and FAO
Genome Organization of aPotyvirus
Potyviridae: CBSD Viral pathogens

Only two genetically distinct virus species?
Whitefly, the vector of viruses causing CMD and CBSD
Challenge to management of the two diseases

- Continuous presence of the virus and the vector throughout the year
- Attachment of farmers to particular cultivars which are susceptible to the disease
- Limited number of resistant/tolerant genotypes preferred by farmers

VIRCA project was initiated to combat these virus problems
Vision: Food security for 30 million food insecure Ugandans and Kenyans who depend on cassava as their staple food.

Mission: Improve cassava harvests of smallholder cassava farmers in Kenya and Uganda by delivering genetically enhanced, farmer-preferred cassava varieties that can resist the Cassava Brown Streak Disease and the Cassava Mosaic Disease.
Virus resistant cassava for Africa (VIRCA) Project

Goals

Deliver farmer-preferred transgenic cassava resistant to CMD and CBSD to farmers in East Africa

Capacity building (human and institutional)
Training of staff – both locally and internationally

- Biosafety compliance and CFT management
- Molecular techniques, plant virology, data management
Improved facilities and equipments

- Construction of greenhouses, laboratories and CFT sites
The Technology

- Different technologies tested

- RNAi technology (gene silencing) technology selected
 - Principle similar to immunization
 - *Nature does not allow dsRNA in living organisms*

- Sequences derived from viruses causing the diseases in East Africa
Gene Silencing

- Also called RNA interference (RNAi)

- Results in down-regulation of a gene at the RNA level

- Referred to as PTGS when it occurs post transcription

- PTGS is a natural anti-viral defense system that occurs in plants

- Can be triggered by transgenes, viruses and dsRNA molecules.

- Once triggered GS is maintained by diffusible messenger that mediates the propagation of *de novo* PTGS through the plant.
Gene construct for CMD resistance

All the constructs were initially made in pILTAB-0588 vector carrying the Cassava Vein Mosaic Virus & 35S promoters and NOS poly A sequence using Xba I & Kpn I and BamH I & BstB I restriction enzymes.
CMD in Greenhouse

- Transgenic cassava lines showing resistance to EACMV; the effect of RNA-silencing constructs targeting the virus rep gene

- Clone K201 92% homology to EACMV-UG, 80-100% infectivity, faster progression of symptoms
Gene construct for CBSD viruses

- Near full length coat protein (CP) genes of both virus were used to make the inverted repeat
CMD entries evaluated in the CFT

<table>
<thead>
<tr>
<th>Entry</th>
<th>Line</th>
<th>Vector</th>
<th>Gene of interest</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P670-007</td>
<td>pILTAB670</td>
<td>AC2</td>
<td>AC2 from EACMV-UG</td>
</tr>
<tr>
<td>2</td>
<td>P670-010</td>
<td>pILTAB670</td>
<td>AC2</td>
<td>AC2 from EACMV-UG</td>
</tr>
<tr>
<td>3</td>
<td>P560-001</td>
<td>pILTAB560</td>
<td>Full Length AC1</td>
<td>AC1 from EACMV-UG</td>
</tr>
<tr>
<td>4</td>
<td>P560-008</td>
<td>pILTAB560</td>
<td>Full Length AC1</td>
<td>AC1 from EACMV-UG</td>
</tr>
<tr>
<td>5</td>
<td>P560-011</td>
<td>pILTAB560</td>
<td>Full Length AC1</td>
<td>AC1 from EACMV-UG</td>
</tr>
<tr>
<td>6</td>
<td>P561-009</td>
<td>pILTAB561</td>
<td>C-Terminal AC1</td>
<td>AC1 from EACMV-UG</td>
</tr>
<tr>
<td>7</td>
<td>P561-013</td>
<td>pILTAB561</td>
<td>C-Terminal AC1</td>
<td>AC1 from EACMV-UG</td>
</tr>
<tr>
<td>8</td>
<td>P561-021</td>
<td>pILTAB561</td>
<td>C-Terminal AC1</td>
<td>AC1 from EACMV-UG</td>
</tr>
<tr>
<td>12</td>
<td>TME14</td>
<td>Nontransgenic</td>
<td>None</td>
<td>CMD resistant</td>
</tr>
<tr>
<td>13</td>
<td>TMS 60444</td>
<td>Nontransgenic</td>
<td>None</td>
<td>Susceptible control</td>
</tr>
<tr>
<td>14</td>
<td>TMS 30572</td>
<td>Nontransgenic</td>
<td>None</td>
<td>Resistant control</td>
</tr>
</tbody>
</table>
Field trial Results

Non-transgenic Control

Transgenic plants
CMD trials Conclusions

• Target virus controlled effectively over multiple seasons

• Need for stacking to control all CMD viruses
Necrotic Rot of Storage Roots due to CBSD

- Complete spoilage, yield reduction
- Two viruses: CBSV, UCBSV

CBSD outbreaks reported in the highlands in mid 2000s

- One of 7 most dangerous crops diseases in the world impacting food security (*Science* 327 – 12 February 2010)
- Similar features by New York Times and FAO
Entries evaluated

<table>
<thead>
<tr>
<th>Entry</th>
<th>Line</th>
<th>Gene of Interest</th>
<th>Copy #</th>
<th>UCBSV siRNAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0718-CC001</td>
<td>Truncated Full Length CP</td>
<td>1</td>
<td>+++</td>
</tr>
<tr>
<td>2</td>
<td>0718-CC004</td>
<td>Truncated Full Length CP</td>
<td>1</td>
<td>++</td>
</tr>
<tr>
<td>3</td>
<td>0718-CC007</td>
<td>Truncated Full Length CP</td>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>0718-CC011</td>
<td>Truncated Full Length CP</td>
<td>2</td>
<td>++</td>
</tr>
<tr>
<td>5</td>
<td>0718-CC012</td>
<td>Truncated Full Length CP</td>
<td>2</td>
<td>++</td>
</tr>
<tr>
<td>6</td>
<td>0719-CC004</td>
<td>N-Terminal CP</td>
<td>2</td>
<td>+++</td>
</tr>
<tr>
<td>7</td>
<td>0719-CC005</td>
<td>N-Terminal CP</td>
<td>1</td>
<td>+++</td>
</tr>
<tr>
<td>8</td>
<td>0719-CC014</td>
<td>N-Terminal CP</td>
<td>1</td>
<td>+++</td>
</tr>
<tr>
<td>9</td>
<td>0720-CC003</td>
<td>C-Terminal CP</td>
<td>1</td>
<td>+++</td>
</tr>
<tr>
<td>10</td>
<td>0720-CC004</td>
<td>C-Terminal CP</td>
<td>1</td>
<td>++</td>
</tr>
<tr>
<td>11</td>
<td>0720-CC005</td>
<td>C-Terminal CP</td>
<td>2</td>
<td>++</td>
</tr>
<tr>
<td>12</td>
<td>0720-CC008</td>
<td>C-Terminal CP</td>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td>13</td>
<td>0720-CC009</td>
<td>C-Terminal CP</td>
<td>1</td>
<td>+++</td>
</tr>
<tr>
<td>14</td>
<td>CV. 60444</td>
<td>None</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>CV. 30572</td>
<td>None</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Symptoms of CBSD at Harvest in Uganda

- 95% of roots of Line 1-718 were free of necrosis
- 90% of roots of WT 60444 control had severe necrosis

Best test line; No rotting of the storage roots

Control line without the gene; severe rotting of roots
Summary

CMD

• Control of targeted CMD-causing viruses achieved
• Stacking of genes for control of different species needed

CBSD

• Control of both UCBSV and CBSV achieved in TME204
VIRCA DONORS

Bill & Melinda Gates Foundation

USAID

The Howard G. Buffett Foundation

MONSANTO Fund