Xylan structural variation: Effects on the fermentation profiles of *Plantago* species seed mucilage

George N. Mondoh

Co-authors:
A/Prof Rachel Burton
Dr. Matthew Tucker
Cell walls & Dietary fibre

- Cell walls Composition

(Doblin et al., 2010)
(Burton et al. 2010).
Dietary fibre

- Soluble (dissolves in gut)
 - Reduce absorption of fats and sugar
 e.g. Legumes, Barley, Oat bran etc.

- Insoluble (absorbs)
 - Prevent and treat constipation, IBS etc
 e.g. wheat, corn, psyllium, fruits and vegetables etc.

- Benefits; Prevent cardiovascular diseases & colonic cancer etc
Plantago species

- What are Plantago species?
- Over 400 known species.
- *Plantago* extensively used to study xylan synthesis.
- *Plantago ovata* seed husks (PSH) also used as an important source of xylan rich dietary fibre (DF). (Metamucil).
- PSH xylans are poorly fermented by colonic bacteria.
- Fermentation of DFs by colonic bacteria yields health beneficial end-products like Short Chain Fatty Acids (SCFA).
- Is there a readily fermentable *Plantago* species?
Plantago species seed mucilage diversity
(Phan 2012)

- **Mucilage extrusion profiles**

- **Xylan structure**

- **Mucilage composition**

<table>
<thead>
<tr>
<th>Species</th>
<th>Xylan % in mucilage</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. ovata</td>
<td>88%</td>
</tr>
<tr>
<td>P. coronopus</td>
<td>48%</td>
</tr>
<tr>
<td>P. cunninghamii</td>
<td>85%</td>
</tr>
<tr>
<td>P. lanceolata</td>
<td>66%</td>
</tr>
</tbody>
</table>
Heteroxylan structure in *Plantago ovata* seed mucilage

In both *in-vivo* and *in-vitro* fermentation models xylanases digest the structure by cleaving at specific points.

(Van Craeyveld et al., 2009).
Project Aims

To investigate the effect of the differences in *Plantago* species seed mucilage composition and xylan structures on their fermentability and influence on gut microbial composition.

Specific Objectives

- To determine the fermentation kinetics of mucilage from four *Plantago* species.
- To identify and measure key fermentation end-products i.e ammonia and short chain fatty acids (SCFA).
- To determine gut bacterial population shifts after fermentation of mucilage from four *Plantago* species.
Results and discussion

- **In vitro batch fermentation process**
- **Plantago** species used:

 \[P.\ ovata,\ P.\ coronopus,\ P.\ lanceolata\ \text{and}\ P.\ cunninghamii.\]

- **Design**

 Five replicates of the four **Plantago** species were fermented in an *in vitro* batch fermentation process using bacteria inoculum extracted from porcine faeces.
Comparison of fermentation kinetics after 48 hours

Gas production profiles

Cumulative gas production parameters after 48 hours (Tukey’s Studentized test)

<table>
<thead>
<tr>
<th>Substrate</th>
<th>RMAX (ml/h)</th>
<th>TMAX (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. cunninghamii</td>
<td>5.3<sup>b</sup></td>
<td>22<sup>a</sup></td>
</tr>
<tr>
<td>P. coronopus</td>
<td>8.7<sup>a</sup></td>
<td>10<sup>c</sup></td>
</tr>
<tr>
<td>P. lanceolata</td>
<td>5.4<sup>b</sup></td>
<td>12<sup>bc</sup></td>
</tr>
<tr>
<td>P. ovata</td>
<td>3.2<sup>c</sup></td>
<td>15<sup>b</sup></td>
</tr>
</tbody>
</table>
Comparison of fermentation end-products after 48 hours

<table>
<thead>
<tr>
<th>Substrates</th>
<th>NH$_3$</th>
<th>Acetic BCR</th>
<th>Propionic</th>
<th>Butyric</th>
<th>Total SCFA</th>
<th>AcTot</th>
<th>PropTot</th>
<th>ButTot</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mMol/gDM</td>
<td>mMol/gDM</td>
<td>mMol/gDM</td>
<td>mMol/gDM</td>
<td>mMol/gDM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. cunninghamii</td>
<td>15.44b</td>
<td>3.0c</td>
<td>2.1a</td>
<td>0.07b</td>
<td>0.12b</td>
<td>5.8a</td>
<td>51.92c</td>
<td>36.97a</td>
</tr>
<tr>
<td>P. coronopus</td>
<td>19.26a</td>
<td>3.41b</td>
<td>1.85ab</td>
<td>0.084a</td>
<td>0.14a</td>
<td>6.06a</td>
<td>56.33b</td>
<td>30.53c</td>
</tr>
<tr>
<td>P. lanceolata</td>
<td>17.20ab</td>
<td>3.86a</td>
<td>1.74b</td>
<td>0.069b</td>
<td>0.12b</td>
<td>6.30a</td>
<td>61.31a</td>
<td>27.65d</td>
</tr>
<tr>
<td>P. ovata</td>
<td>16.44b</td>
<td>3.11bc</td>
<td>2.07a</td>
<td>0.070b</td>
<td>0.13ab</td>
<td>5.94a</td>
<td>52.42c</td>
<td>34.81b</td>
</tr>
<tr>
<td>P value</td>
<td>0.0020</td>
<td>0.0001</td>
<td>0.0081</td>
<td>0.0001</td>
<td>0.0022</td>
<td>0.2057</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>MSD</td>
<td>2.3495</td>
<td>0.3654</td>
<td>0.3161</td>
<td>0.007</td>
<td>0.018</td>
<td>0.6764</td>
<td>1.4887</td>
<td>1.8839</td>
</tr>
</tbody>
</table>
Bacterial population shift analysis

- Ion torrent sequencing
- Ion tag PCR for 16S rRNA (using modified locus specific primers)
- PCR product purification (HPLC)
- Submission to AGRF

- Sequence read output: **4,748,104**

- Phylogenetic analysis using MG-RAST software
 (Metagenomics Rapid Annotation using Subsystem Technology) www.metagenomics.anl.gov
 - Dereplication
 - Screening
 - Dynamic trimming
 - Sequences aligned to greengenes (16S database)

Ion torrent Personal Genome Machine

316 chip (100Mbp)

Courtesy AGRF Adelaide
Post-fermentation microbial species distribution

Bacterial species

- Lactobacillus murinus
- Lactobacillus agilis
- Bifidobacterium pullorum
- Bacteroides ovatus
- Bacteroides xylanisolvens
- Bacteroides fragilis
- Clostridium haemolyticum
- Clostridium xylanolyticum
- Prevotella copri
- Prevotella buccalis

Normalised values

- P. ovata
- P. coronopus
- P. lanceolata
- P. cunninghamii
- Initial inoculum
Conclusion and Recommendations

• Distinct fermentation patterns were observed between *Plantago* species.

• *P. coronopus* mucilage identified as the most readily fermentable substrate.

• Clear differences were identified in relative bacterial abundance.

• It is not clear what mucilage components were being fermented.

• Amounts of fermented xylans were not determined.

• Assays to determine exact amount of xylans fermented are required.

• Comparison with other xylan rich producing grasses necessary.
Acknowledgements

SUPERVISORS

• A/Prof. Rachel Burton (UA)
• Dr. Matthew Tucker (UA)
• Dr. Deidre Mikkelsen (UQ)
• Dr. Barbara Williams (UQ)

SPECIAL THANKS TO

• Ms. Jana Le-Lam-Thuy Phan
• Mr. George Dimitroff
• Dr. Neil Shirley
• Dr. Alan little
• Dr. Barbara Gorham (UQ lab)
• PCW Lab Members (UQ&UA).

Funding

• Australia Awards Africa (AusAID).
References

THANK YOU